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Parallel Scheduling Aljoritnms*
£liezer Dekel and Sartaj Sanni
University of Minnesota

Abstract:

Je obtain fast parallel algorithms for several scneduling
problems. Some of the problems considered are: scheduling
to minimize tne number of tardy jobs:; job sequencing with
deadlines; scheduling to minimize earliness and tardiness
penalties; channel assignment; and minimizing the mean fin-
isn time. The shared memory model of parallel computars is
used. .

A

Keywords and Phrases: parallel algorithm, complaxicy,
sharad memory model, mean finish time, earliness, tardiness,
d=adline.
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l. Introduction

Wwitn the continuing dramatic decline in the cost of
nardware, it is becoming fesasible to economically build com-
puters with thousands of processors. In fact, Batcher [3]
describes a computer (MPP) with 16,384 processors that is
currently being builec for NASA. In coming years, one can
expect to see computers with a hundred chousand or even a
million processing elements. This expectation has motivated
tne study of parallel algoritihms.

Since the complexity of a parallel algorithm depends
very much on the architecture of the parallel computer on
which it is run, it is necessary to k2ep the architecture in
mind when designing the algorithm. Several parallel archi-
tectures have been proposed and studied. 1In this paper, we
shall deal directly only with the single instruction stream,
multiple data sctream (SIMD) model. Our techniques aand algo-
ritnms readily adapt to the other models (eg: multiple
instruction stream multiple data stream (MIMD) and data flow
models). SIMD computers have the following characteristics:

(1) They consist of p processing elements (PEs). The PEs
are indexed 3,1, ..., p-1 and an individual PE may be
referenced as in PE(i). Each PE is capable of perform-
ing the standard arithmetic and logical operations. In
addition, each PE knows its index.

(2) Each PE has some local memory.

(3) The PEs are synchronized and operate under the control
of a single instruction stream.

(4) An enable/disable mask can be usad to select a subset
of the PEs that are to perform an instruction. Only the
enabled PEs will perform the instruction. Tne remain-
ing PEs will be idle. All enabled PEZs execute the same
instruction. The set of enabled PEs <can change from
instruction to instruction.

While several SIMD models have been proposed, in this
paper we snall deal explicitly with only the shared memory
model (SMM). In tnis model, there is a large common memory
that 1is shared by all the PEs. It is assumed that any PE
can access any word of this common memory in 0O(l) time.
Ahen two Oor more PEs access the same word simultaneously, we
snall say that a conflict has occured. 1If all the PEs (at
least two) that simultaneously access the same word wisn to
write in it, it is called a write conflict. If all wish ¢to
read, then it 1is a read conflict. Write conflicts may be
permitted so long as all the PEs wish to write tne same
piece of information. As far as our discussion here is con-
cernad, no r=2ad or write conflicts are allowad. A
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description of some of the otner SIMD models can be found in
£51.

Most algorithmic studies of parallel computation have
oeen pased on the SuM (1,2,4,7,10,11,19,21,22). Parallel
mactrix and graph algorithms for the SMM have been developed
by Agerwala and Lint (1], Arjomandi {[2], Csanky (4], Ecx-
stein [7], Hirschberg, Chandra, and Sarwate (13], and Savage
£221]. Hirscnberg [11], Muller and Preparata ([19], and
Preparata {21] have considered tnhe sorting problem for SMMs.
Tne results of Muller and Preparata [19] and Preparata [21]
will be made use of in this paper. In these two papers, i
1s shown that n numbers can be iorted in O(logn) time if n
PEs are available, and in 0(log®™n) time when n PEs are
available.

Dekzl and Sanni [6] develop a design teachnigue for
parallel algorithms that is based on binary computation
trees. This design technique is illustrated using several
examples from scheduling tneory. Some of the scnaduling
problems considered by them are:

Pl: Schedule many machines to minimize maximum lateness
when all jobs have a processing time p.=1.

P2: Scnedule one macnine to mianimize maximum lateness.
Preemptions are permitted.

P3: Schedule one machine to minimize the number of ctardy
jobs.

P4: The job sequencing wich dzadlines problam.

The complexity of &heir parallel algorithms for all the
apove problems is O(legn).

When measuring the 2ffectiveness of a parallel algn-
rithm, one needs to consider both its complexity as well as
its cost in terms of the number of PEs us2d. The effective-
ness of processor utilization (EPU) is defined with respect
to a parallel algorithm and the fastest known sequancial

(i.e., single processor) algorithm for the sam= probl=m.
Laet P be a problem and A a parallel algorithm for P. We
define:

EPU(P,A)=

complexity of the fastest segquential algoricnm for P

number of PEs used by A * complexity of A

lne algorithm of [8] for prablem P]l apova uses n/2 PEs
and nas a complexity of 2(log®n). Th2 fascest seguantial
algoritam kxnown for this problem is due to Horn {4] and runs
in O(n logn) time. So, the,EPU of the parallel algoricnm of
(6] for Pl is O(nlogn/{(nlog®n)) = 3(1/logn).




The best EPU one can hope for is O(1l). Few parallel
algorithms achieve this EPU. Dakel and Sahni (6] present
some algorithms that d4o. One that we snall need nere is for
the partial sums proplem. We are giveﬁ n numbers

S IRA-PYRREYE W and are required to compute Aj= ® a,, 1<j<n,

where ® 1s any asscoiative operator (egq. ma%,lmin, +, *).
Their algorithm run in O(logn) time and uses n/logn PEs.

In this paper, we consider several scheduling problems.
Fast paralleil algorithms are obtained for <each. In each
case, the complexity analysis is carried out on the assump-
tion tnat as many PEs as needed are available. This is in
conformance witn tne assumption made in almost all the
research work done on parallel computing. This assumption
is of course unrealistic. A parallel algorithm will eventu-
ally be run on a machine with a finite number (say k) of
PEs. It snould be easy to see that all our algorithms are
easily adapted to the case of k PEs. If our algorithm has
complexity O{(g(n)) using £(n) PEs, then with k PEs, k <
f(n), 1its <complexity is 0O(g{(n)f(a)/k). We shall continue
with tradition, and explicitly analyse our algorithms only
for tne case when as many PEs as needed are available.

In Sections 2 and 3, we consider two relatively simple
examples. The first of these is to minimize the finish time
when m identical machines are available. The second example
is to minimize the mean finish time when m uniform machines
ara available. [n Sections 4, 5, 6, and 7, we respectively,
consider the following problems:

(i) minimize the number of tardy jobs when Pi =1
1<i<n and 1 machine is available.
(ii) job sequencing with deadlines. ;
(iii) schedule one mancine to minimize the maximum
earliness and tardiness penalties.
and
(iv) channel assignment.

2. Minimum Finish Time

When preemptions are permitted, a minimum finish time
schedule for m machines is efficiantly obtained using Mc
Naughton's rule {17]. Let pPy+Pqys - pe the processing
times of the n jobs. Th Llnlsn glme, £, of an optimal
preemptive schedule is given by:

Pyl

f = max{ max {p.}, i

i
1<1<n i

Bl
0 v s

1

Using £, tne optimal schedule may o0e constructed 1in
JO(n) time ([17]. Job 1l is scheduled on machine 1 from J tco
p, 2nd job 2 from p, to min[pl+pz,f}. If p, + p, > £, thea

et il i NN i a0 i - munn-h--—_nm.mJi‘
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th2 remainder of job 2 is done on macnine 2 starting at time
Jd. If p, + p, <f, tnen joo 3 is scheduled on macnine 1 from
P P, to mia{pl + Py + 93,f}; 2te.

1L

Using tne parallel algorithms of / max{pi} and 2 p.

6] £

=ll

may be computed in O{logn) time witn a/loga PEs. To obtdin

the actual schedule, we also need Ai= P

tioned 1in Section 1, all the A.s can’p3d computad in O(logn)

time using a/logn PEs ([(6]). L&t A =d. Eacn job i can now

datermine its own processing assignment by using the follow-

ing rule:

3 l<i<n. As men-

| viFp M
ful

x — [A; /1 * £ - A

casa i-1
:x=3 : scheduls job i on machine [:Ai/fj from J to p;
:x>p, : schedule job i on machine | ay/£1 from

f-x to f-x+p,

:2lse: schedulz job i on machine [—Ai/fj from 9 to
Pi-X

end case

Jdna may verify that x gives the amount of processing
time Lla2ft on tnas machine [—Ai_l/fj after job i-l1 is fin-
isned on that machine.

£xample 2.1: Suppose we nave 14 jobs with processing times
———len  ——— — . R - - - - N
as given in Figure 2.l1. Let =m=5. f=max{(7, 33/5}=13. Fig-
are 2.1 gives the A, and x wvaluss £for each job. The
scneduls optainad is given in Figure 2.2.[(]
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Figure 2.1

If we nave n PE3, 3ll the machine assignments <aa Dde

compuzad ia J(l) +ime. However, using only a/logn PEs,
tnese assignments may be optained in Oflogn) time (i.e.,
2acn PE  computas at most | logn’| assignments). So, the

ovarall scneduling algoritnm nas a complaxi=zv 2f J(logn) and
i8e3 a/1lo3n PEs. S0, ics ZPJ is J(na/(logn*n. logn))=2(1).
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Figure 2.2

3. Minimum Mean Finish Time

A non-preemptive schedule that minimizes the wmean finish
time of n jobs on m identical machines is obtained by using
the LPT rule. B3y simply using a parallel sorting algoritnm,
tnis schidule may be obtained in O(logn) time witn n” PZIs or
in O(leg®n) time with n PEs.

Let us c¢onsider the case of m uniform parallel
machines. Associated with machine i is a spesd s.,. [t
taka2s machine i, p./si time unitcs to complete the procéssing
of job 1i. HorowitZ and Sahni {13] present an J(nlogmn)
algorithm that constructs a minimum mean finish time
schedule for this case. Their algorithm is reproducsd ia
Figure 3.1. This algorithm assumes that tihz speeds and pro-
cessing times have been normalized and sorted such that
8;j=l<s, ... s and py<py<...<p. -

By examining this algorithm, we sea that another way to
obtain an optimal schedule is ©o sort the an numpbers i/s.,
1<i<n, 1<j<m iato nondecreasing order. Let the resulting
sequance be a,, a,, ags crer Ao If a, corresponds to
q/s., then job d+1-i2is s&heduled oh'machine™j and there ars
q-leobs following it on that machine.

This information may e optained 1in O(logzmn) timf
using a parallel sort and mn PEs or in O(logmn) <time with =
a® PEs. If we use the former sort algorjchm, the EPU of our
parallel algorithm is J(anlogma/(mn*log“amn))=0(1l/(mlogmn)).
I£f the latter sort algorithm is used, thez EPU of our
scheduling algorithm  becomes d(nlogmn/(m“n“logan)) =
9(1/(m®n)). The actual start and finisn times for sach job
can de obtained by latar using tha partial sums algorichm of

~ -
9d.
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Algoricam MFT

Input: m processors with speeds 1, s,, ..., S
1<s,<...<s_; n jobs initially sorted soO tnat
Py <P i...ipn w#here the times p; are for pro-
cessdr 1.

Output:Sets R, 1l<i<m. The Jjobs in R, are to be run
on prolessor i in increasing “order of cneir
execution times.

for j «~ 1 tom ~ 1 do
Ri¢—¢; i<« 1/s.
end for J J
R_ < ln}; i_ <« 2/s
/PNote that The above assigns tine job with tne
largest processing time to the fastest processor,
m.//
for kx - n -1 to 1l do
Let u be the largest index such that i,= min {i.}
1 i+ 1/s, 1<3&m
end fo

and MFT

Figure 3.1

4. Number of Tardy Jobs

Let J={(p.,di)|liiin} define a set of n jobs p. is the pro-
cassing timd of job i and di is its due time.” Let 3 be any
one machine schedule for J. “Jop i is tardy in the schedule

S iff it completes after its due time di'

Hodgson and Moore [18] hnave developed an 0O(nlogn)
seguential algoritnm that obtains a schedule tnat minimizes
tae nymber of tardy jobs. Dexel and Sahni [8] present an
0{(log“n) parallel algorithm to obtain a scnadule with the
fawast aumber of tardy jobs. Tnis algorichm uses 2J(n) PZs
and has an EPU of 0(l/logn).

In this section, we shall develop a parallel algoritnm
for the case when p.=1, 1l<i<n. This algorithm will have a
complexity O(logn). it will require O(n“) PEs and thus nave
an EPU that is 0(1/n). while the algorichn of this section
nas an EPU that is inferior to that of [8], it is faster by
a loga factor. It is interesting to note that the simplifi-
cacion p.=l, 1<i<n does not lead to a corresponding =sp2ed up
for tne Saquantial case.

The problem of finding a schedule that minimizes <tne
numper of tardy Jjobs is equivalent to that of selecting a
maximum cardinality subset U of J such that avery job in U
can e completed by its due time. Jobs not in U can be
schedulad after those in U and will oe tardy. A set of jobs
J such that every job in U can de schedulad to complete by
its due time is called a feasible set. It is well Xxnown
that a set of jobs U is feasible iff scheduling jobs in U in

| . - A — T —_— “‘
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nondecreasing order of due times results in no tardy jobs
(see [14] for eg.).

When p.=1, 1<i<n, a maximum cardinality feasible set U
can be ob%alned by considering the jobs in nondecreasing
order of due times. The job j currently Dbeing considered
can bpe added to U iff {ul<«d.. Procedure FEAS(J,b) is a
slignt generalization. It finds-a maximum subset of J that
can be scheduled in the interval [d,b]. DONE(i) is set to =1
if job i1 is not selected and is set to a number greater than
J otherwise. If DONE(i) > 3, then job i is to be scheduled
from DONZ(i) - 1 to DONE(i). The procedur= itself returns a
value that equals the number of jobs selected. The correct-
nass of FEAS is easily established using an exchange argu-
ment. Its complexity is O(nlogn) as it takes tnis much time
to order the jobs by due time.

line Procedure FEAS(J,n,Db)
//select a maximum number of jobs for processing//

//in [3,0] n=|Jl//

:j>o: return(j) //interval full//
3<d //select i// j <= j+l; DONE(i) «j
end case
13 end for
11 return(j)
12 end FEAS

1 set J; integer n,b; global DONE(l:n)

2 sort J into nondecreasing order of due times
3 DONE(l:a) <« -1 //initialize//

) j oe— 3

5 For i « 1 tondo

6 case

7

8

9

Figure 4.1

Let J be a set of n unit processing time jobs. Lat
D(i), 1<i<k be the dJdistinct due times of the jobs in J.
Assume that D(i) < D(i+l), 1<i<k. Let n(i) be the number of
jobs in J with due time D(1), 1<i<k. Clearly, % n(i)=n.
Let D(9)=3 and n(d)=3. Define F(i) to be the wvalus of j
when procedurs FEAS (Figure 4.1) has just finished consider-

ing all jopbs in J witn due time at most D;. It is evident
that:

F(3) = D(2). =
(4.1)

F(i) = min{F(i~1)+n(1i),D(i),b}, l2i<k

Expanding tne recurrence (4.1), we obtain:

min{D(3)+N(1), D(1), b}
min{F(1)+n(2), D(2), Db}
mln[D(J)+n(l)+n(2).D(l)"'n(z):b+n(2)'0(2)'bi

F(1)
F(2)

W na




min{D(3)}+n(1l)+n(2),D(L)+n(2),D(2),b}

F(3)
min{D(3)+a(l)+n(2)+n(3),D(1)+n{(2)+n(3),D(2)+n(3),D(3),p}

And, in general

o

(4.2) F(m) = min{ min {D(i)+ 2 n(g)},pb} J<m<k ]
l<i<m J=1i+1 E

Tha maximum number of joos ian J that can be scnedulad

in (3,b], >3, so tnat none is tardy is F{k). F(K) may be
efficiently computed, in parallel as £follows. Let tne due
times of the n Jjobs in J be 4(1), 4(2),...,d(n). Let
d(Jd)=d. We may assume that d(i)>J, 1l<i<n. The ccmputacion

steps ara:

Step 1: sort d(l:n) into nondecreasing order.

Step 2: dJdetermine the points r(3), ..., r(k-1) in d(J:n)
whera the due times <change I.e. r(i) <
r(i+l),1¢i<k and 4(r(i)) # d(r(i)+l). Let
r(k)=n. Clearly, r(8)=8, and n(i)=r{i)-r(i-1)
and D(i) = d(r&i)), 1<i<x; D(dJ)=a.

Step 3 since D(i) + 2 n{(qg) = D(i)+n-r(i),we
compute F(k)=$t%{n+ min {D(i)-r(i)},b} L[]

J<ick

Example 4.1 Figure 4.2(a) gives the due times of a sat J of
15 jobs. in Figure 4.2(p), the jobs have been ordered by
due times. The points at whicn the due times change are
shown Dby heavy lines. We sae that k=6; r(3:58) = (3, 3, 7,
3, 9, 13, 15) and D(¥:5) = (3, 2, 3, 5, 8, 9, 11). S0,
n+ min {D(i)-r(i)} = 15 + min{d4, -1, -4, -3, -1, -3, -4} =
J<i<k

15-4=11. If b > 11, then tne maximum number of aontardy
joos is 11. []

Withn n2 PEs, step 1 can be carried out in O(logn) time.

{see {19] and [21]). Using n-1 PEs, the boundary points can
pe found in O(l) time. PE(i) sinmply <checks to ss2e if
d(i)<d(i+l), 1l<i<n-1. If so, then i is a boundary poiac. %
and n are also boundary points. The boundary points have
now to be moved into memory positions r(d),r(l),...,r(x).
Tnis can be done in J(logn) time using n PEs and the data
concentration algorithm of [20]. Another data concsentration
step moves d{r(d)), da(r(l)), ..., d(r(k)) into D(3), D(1),

++, D(x). Usiag X+l PEs, D(i)-r(i), J<i<k can be computed
in 0(1) tima. min{D(i)-r(i)} can be obtained in 0(logk)
time using the binary tree computation model of [6] (Figure
4.3 saows this for our example.) As =2xplained in ({6], only
J({%/logx) PEs ars needed for this; but using k/2 PEs is
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(a) input set of jobs.
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P J i ] ] ! ) {
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(b) jobs sorted in nondecreasing order of due time
Figure 4.2
fastzer). F(k) can now be computad using an additional O(1
<ime The overall complexity is therefors O(logn) and n
PEs ara usad. Tane EPU of ctne apove algoritam is
J{(nlogn/(logn*n“)) = O(i/n)

Figure 4.3

N2 nave saan how to determin2 che maxiaum aumpar of

nontardy jobs. In some apolications (see tna nex:t section),
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this is adequate. To obtain the actwal schedule, we may
proceed as follows. First, modify procedure FEAS by adding
the line:

8.1 :else: DONE(i) <« j
and by delsting line 7.
It is easy to see that Jjob i 1is completed at time

DONE(i) iff DONE(i)<b and DONE(i-1) # DONE(i), 1¢i<n. For
the modifisd algorithm, we sae that:

DONE(4) = J
(4.3) DONE(1i) = min{DONE(i-1)+1,d.}, l<izn
Solving (4.3), we obtain:
(4.4) DONE(i) = min {d_,+i-j}, l<i<n
J<j<i

DONE(1i), l<i<n may be computed in O(logn) time using n2
PEZs (tnough a“/logn are sufficiasnt) and the binary computa-
tion tree model (se=2 [6] and Figure 4.3). ,Since the initial
sort takes OJO(logn) time and requires n”~ PZS, the overall
time complexity is O(logn) and the EPU 1is ©O(1/n). From
DOWE(i), the schedule is easily obtained.

Example 4.2: For the sorted data of Example 4.1, we obtain
DONE%Z:l?);(Z, 1, 2, 2, 3, 3, 3, 3, 4, 3, 6, 7, 3, 9, 13,
11). So the set of non tardy jobs in (3,b], o211 is {2, 4,
i, 3, 11, 5, 38, 12, 14, 7, 9}. By concentrating these to
the left, we obtain the permutation (2, 4, 1, 3, 11, 5, 8,
12, 14, 7, 9, 15, 6, 14, 13) which represents an optimal
scnedule. []

5. Job Sequencing With Deadlines

In tais problem, we are given a sa2t J of n jops. Associated
witn joo i is a profit z; and a due time 4., l<i<n. Every
joo has a processing regquirement of one unit. If job 1 is
completed by time d,, then a profit z. ,z.>3 is made. If
joo i is not completedlby the time 4., then notaing 1is
2arned. Wwe wisn rto selsct a feasible supbset of J that
yi2lds maximum return (recall thac R is a feasibla subset
1ff all jobs in R can be scheduled to completa2 on time).

One way to find a feasible subset R of J that gives
maximum return is:
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Step 1l: sort J into nonincreasing order of z;
Step 2: & « {1}

for i < 2 ton do
if R U{i} 1s feasible tnen R« RU{i}
end for

Figure 5.1

A correctness proof of the above procedure may be found
in ([14]. It is also possible to implement the above scheme
by a sequential algorithm of complexity O(nlogn). For the
parallel version, we reduce the job sequencing with dead-
lines problem into 2n independent feasibility problems.
First, we note that if Rl and R2 are feasible subsets of J
and if Rl is one with maximum return, then |R2{<|Rl}.

Theorem 5.1: Let A be a feasible subset of J that yields
maximum return. Let B Dpe any feasible subset of J.
IBl<lAl.

Proof: Since A and B are f2asible subsets, they can respec-
tively pe scheduled in {d,|A|l] and (3, [8l] in such a manner
that no job is tardy. Cocnsider such a scheduling SA of A
and SB of B. Consider a job i that is in both A and B. If i
is scheduled earlier in SA than in SB, we may change SA Dy
moving i to the slot it 1is scheduled in B. This would
require moving the job (if any) scheduled in this slot in SA
to the position praviously occupied by i (see Figure
5.2(a)). A similar transformation may be made if i is
scheduled later in SA than in 8B (s2e Figure 5.2(b)).

By performing the above transformation on all jobs in A
n B, we obtain schedules SA' and SB' that contain no tardy
jobs. In addition, jobs in A n B are scheduled in the sume
slots in SA' and SB'.

If |Bl » |A|, then there must be job j scheduled in SB'
in a slot that is empty in SA'. Also, j # A. By adding j
to A, we clearly obtain a feasible set with return larger
than that obtained from A. This contradicts the assumption
on A. So, IBl<lal. (]

From the sequential algorithm for the job sequencing
problam and Theorem 5.1, we may derive a parallel algorithm.
Let T1(i) = {jlz. > z, or (2. = z, and j < i)} and T2(i) =
T1(i) J (i}. Jconstder aJschedule for T1(i) tnat has the
fewest number of tardy jobs. Let x{(i) be the number of noa-
tardy jobs in this schedule. Let y(i) be tne corresponding
number for T2(i). From our discussions, it follows that job
1 will Dbe included in R (Figure 5.1) iff y(i) > x(i).

Hence, R may be obtained by computing x(i) and y(i), 1l<i<n.
x(i) and y(i) may be computed using the parallel algorithm
for F(k) described 1in Section 4. From R, the optuimal

o
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Figure 5.2: Lining up common joos.

schedul2 is obtained by scheduling the jopbs in R first, in
order of due times; and then scheduling the remaining jobs
in any order. This construction can be carried out by firsc
Soncentrating the joos 1ia R and tiaen sorting them by due
times.

Example 3.1: Figure 53.3(a) shows an example job s2c with 12

jobs. Tnese have Dpeen ordered Dby due times in Figura
5.3{({p). Figure 5.4 gives T2(i), 1l<i<n. The number of non-
tardy jobs in the optimal schedules for T1(i) and T2(i) is
respectively given in {(x(i),y(i)). It also tells if Jjobo i
is <o pe iacluded in R. R is seen to be {1, 3, 5, 6, 8, 9,
11, 12}. These jobs may be concentrated to one =2nd to

obtain Figurz 53.5. This gives tna optimal scnedule. []
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Figure 5.5 The optimal schedule

As far as the complexicy is concerned, the initjial sort by
due ctimes <an be done in JO(logn) time using a® 2Es. Next,
#e n2ed td replicace this sortad Jdata into n copies, sne o
be usad Zor eachn El(i) and T2(i). This replication can o2
carried ocut usiag n” PEs and spending O(legn) cime (tha
Oélogn) time is needed to avoid read conflicts). Now, tne
n~ PEs are divided into n groups 9f n PEs each. Group 1
compuces T1(i) and then T2(i). T1(i) is obtained oy naving
the jch PE in group i flag job j iff z. > z, or (z, = z, and
j<i). Next, the flagged jobs are cdncentrazad in O(fogn)
time using tne n PEs in eacn 3roup. Note taat cnis concen-
tration pr2sarves the due time ordering. The an PEs ia group
i next compute x(i) = F(x.,), Ll<i<n. This takes J(logn)
tima. 7{i), 1l<i<n is cofputed in a manner similar to cthat
used to odbtain x({i7Y.

Haviag ootained x(i) and y(i), n PEs are used to deter-
mine if y(i) > x{(i), 1l<i<n. The saslacted jobs can be con-~
centratad in 3(logn) time using these n PEs. The concentra-
tion preserves che due time ordering of the selecdtad jobs.

The overall complaxity o our parallel algorithm is
therafore O(logn). It uses n” PEs and nas an EPY of 0(1l/n).
This should be contrasted with the algoritnm prasented by us
in {8] for fhe same problem. That algorithm has a complax-
ity 2f O(log®n) but uses only 0{(an) PEs. Thus, its EPU is
9(1/logn) .

6. Barliness and Tardiness Pgnaltiss

L2t J ve a sat of n jobs. Associatad witn 2ach job is a -ar-
get start time a., a target due time b., and a processiag
time ».. Any one machins scnedule § for 3 may be denoted by

a vectdr (s .sg,...,sn) where s, 1s the scart time of job 1i.

Schedule S 1s ddmissacle 1f£f s;"> s; , + p;_ ;s 2<i<n. The
computation time <, of joo i is 8, + p.. The earliness e,

and cardiness ¢, of Joo i are given~by:

2. = max{a,a.—si}

. o= oT =07}
Ty max{J, 103}
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If job i is early (i.e., e, > @) then it incurs a
penalty g(ei). If it is tardy (i.e., t.>3), then it incurs a
penalty n(t,). The objective is to fifid a schedule S that
minimizes the maximum penalty. This prablem was first stu-
died by Sydney [23]. He ootained an 9(n®) algorithm for the
v case when:

1 (1) ai_<_aj implies bi_<_bj

and

(2) G( ) and n( ) are monotone nondecreasing concinuous
functions such that g(d) = h(g) = 3.

. Our notations and.,definitions are taken from Sidney's
, paper. Sidney's 0(n”) algorithm was subseguently improved
“ to O(nlogn) by Lakshminarayan et al. The parallel algorithm
w2 shall devalop here is based on the algorithm of Lakasnh-
minarayan et. al {15].

The algorithm of [16] first finds an admissable
schadule S using procedure ADMIS (Figure 5.1). This pro- ;
. cedure assumes that the jobs are orderad by target start ;
- . times (i.e., a.ia.+l) and within start times by target due
times (l.e.,ai=ai+1 1mplies Diibi+1)' The maximum lateness,
A, in S is next computed. If =0, then S,is cl=arly optimal
(as max{e,}=max{t.}=4). If /A > 3, then E is computed using .
ona of tfieir lemmas. Finally, all the start times in S are :
decrezased by E . The new schedule is optimal. ;

Procaedure ADMIS (a,p,s,n)
jobs are ordered by target start and due times)//
declare n, a
s, « a
EéE i « 2 ton do

i:n,pl:n,slzn

s. < max{a, s._ . +p,_,}
end f£or 1, i-1 "1-1
end ADMIS
Figure 5.1 q

/A can be computed in O(logn) time using n PEs (see
£6]). As described,in (16], E may be computed in O(l) time
using 1 PE. Once E has been obtained, n copies of it <can
oe made in O(logn) time using n PEs. Finally, the s.s can
be updated in O(l) time using n PEs. Also, the initia ordi
ering of the jobs may be carried out in 0O(logn) time with n
PEs. All that remains, is the computation of the admissable
schedule. From Figure 6.1, we s2e that

SI = aé .
(6.1) s; = max{a; s, , + p;_,}, 2ci¢n
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£xpanding the recurrence (6.1), we obtain

i-1
(6.2) s; = max {a;+ % p.},1¢i¢n

1¢j<i I k=3

It should be 2asy to see tnat wusing (6.2) and O(n3)
PEs, one can compute all the s.s in O(logn) time. We shall
devote the ramainder of the section to the development of an
Q(logn) algoritnm that utilizes only n/2 PEs. As we shall
see later, [ n/logn’] are all that is needed.

For conveniaence, we shall assume that the jobs are
indexed J,1,...,n-1 rather than 1,2,...,n. Before describ-
ing the algorithm, wi develop some terminology. Let S(9%:n-
1) be an array. A 2 -block of S consists of all elements of
S whos? indices differ only in the least significant k bits.
The 2 -blocks of A(Z:18) are [0,1], [2,3], [4,5], {6,7],
{8,911, and [18]; the 2°-blocks are [J4.1,2,3]), [4,5,6,7], and
£3,9,13]; 2E¢r Two 2°-blocks are sibling blocks iff their
union is a 2 -block. Thus, {2,1] and [2,3] are sibling
blocks; so also ara {3,1,2,3]) and (4,5,6,7]. However, [2,3]
and [4,5] are not sibling blocks.

Let A(J:n-1) and P(9:n~1) be the target start times and
tne processng times. L%t i, i+l, i+2,...,r] be thne index
set for any 2 -block (a 27 -block has 27 indices upless it is

the last 2 7=block). Nith respect to this 2 -block, we
define
j=1 -
S(j) = Z P(q), j is an index in this block
q=1i
r
(6.3) T(j)y = Z P(g), r is the highest index in the block
q=i
j=-i
Q(j) = max {A{(g)+ 2 P(t)} ,j is a block index
1<q9<3 t=q

J(3) = Q(r) + P(r), j is a block index
For a 2z-block {(i], we have:

(6.4) s(i) = 4; T(i) = P(i); Q(i)=A(i):; U(i)=A(1)

Let x}(= Cili+1""lu] and Y = [u+l,...,v] be Ltwo
5§9fing 2 -plocks. Their union 2 = {[i,i+l,...,v] is a
2 -block. Let S, T, Q, agd U be the wvalues defined 1in

(3.3) wich raspact to tne 2"-blocks. Let S§', Tk+1°" and U'
oe the values defined with respact to the 2 ~block 2.
From (6.3), we s2e that:

s(3) if 3 <« X

(6.5a) S'(§)=! '

| S(3)+T(i) 4if 3 < ¥




R

- 13 -

) | : T(3)+T(u+l) Lif j « X
(6.5b) T (J)=I T(3)+T (i) if jJ <« Y
Q) 1Ry e

I
(6.5¢) Q'(j)=} max{Q(3j), U(L)+S(3)} if j <« ¥

(6.5@d) U'(3)= Q'(v)+P(v)

Jdne also notes that with respect ¢to the entire

rlogzn7
2 -block [2,1,3,3,-+-.n-11,

Q(3) = max [a_+ 3 p(&)}
9<q<¢j t=q
= sj of (6.2)

Qur strategy is to compute the admissable schedule
obtained bpy procedure ADMIS by usigg (6.5 a~d). We start
with the S, T, Q, and U values for 2 =-blocks as given by
(6.4). Next using (6.5 a-d), the,S, T, Q and U values fgr
27 -blocks are obtained; then for 2°-blocks, then for 2°-
blocks; eatc. Until we have obtained the Q values for tne

rlogznj
entire 2 -block.

Example 6.1: Figure 6.2 gives a set of 1J jobs (indexed @
through 9). The first fow of Figure 6.3 gives the S, T, Q,
and U values for the 2 -blocks; atc. The numbers with
arrows Jive PE assignments. From the bottommost row, we
obcain s=(4,3,5,8,12,13,16,208,21,24) as the admissaole
schedule. []

i

ol i1l2 5
plaj2laialilalal
alol1l4ls 9 115115116117

Figure 6.2 An Example of data sec

Let us now proceed to the formal algorithm. In the
actual algorithm, processors are assigned to compute the new
values of S, T, Q, and U. Assume that the PEs ars indexed
0,1,...,[_n/2J -1. With respect toO our axampl2 of Figure
6.3, when k=J, PE(J) will compute the new wvalues of 3(1),
T(3), T(1), Q(l), U(3), and U(l); PE(1l) will compute S(3),
T(2), T(3), Q(3), U(2), and U(3):; ats. When k=1, PEs 3 and 1
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figure 6.3 Computiag ta2 admissable scnedule

) . . 2 L. o
‘ are dotn assigned to the new 2 =-olock {J4,1,2,3], being con-
] structed. PE3 2 and 3 are assigned to the dblock [4,5,6,7].
PEs 4 and 35 ara idle.
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Let ...i,,1 ,il,i be the binary representation of 1i.
The PE assighmefit rule is obtained by dsfining the function

f(i,j)=...ij+l,ij6 ij-l"‘ ig- When 27-blocks are being
combined,  PE(1i) computes S(£(i,k)+2%), T(£(i,k)),
T(£(i,k)+27), Q(£(i,k)+ 27), U(f(i,k)), and U(£(i,k)+ 27)

(provided of course that all these indices are less than n).
The formal algorichm is given in Figure 6.4. This algorithm
mirrors egquations (6.5 a-d). Some minor modifications have
howexer been made. Since T( ) is the same for all indices in
a 2 ~block, S(j)+T(i) of (6.5a) has been replacad by
S(3)+T(j=-2_). Similarly, T(j)+T(u+l) has been replaced by
T(3F)+T(j+27): and U(i)+3(j-1) by U(j-2")+S(j). Notea that as
a result of tnis change, new T and U values for tne rignt
most block may be incorrect (as j+2° may exceed n-1). This
does not affect tne outcome of the algorithm as the T and U
values of rigntmost blocki\are never used. One may verify
that max{U(3+27),U0(3)+T(j+27)=Q"' (v)+P(v) (Eg. 6.5d). When
k=|_logn_| -1, only Q nead be computed.

rocedure PADMIS(A,P,s,n)
//obtain the admissable schedule(s Sy +++48 Y//
declare n, A(G:n-L),P(ﬂ:n—l),S(J:n-i),T(G:n—T)

delcare Q(d:n-1),U(@:n-1),3j,1
for each PE(i) do in parallel
j «— £(i,9) 2
//initialize 2°-blocks//
S(j) «03; T(J) «P(3):Q(3) «A(F);U(3) «—Aa(3)+P(])
S(j+1) «9J; T(j+1) «—P(j+1)
Q(J+1) = A(3+1);U(J+1) «—A(F+1)+P(j+1)
for k<9 to |_log n7|-l do
~/7combine 2 -blocks7/
j¢—f(£,k) //PE assignment//
if j+2 <nkthen K K
Q(j+2 ) —max{Q(j+2,), U(J)+s(j+2,)]}
U(j+2 )«-maxﬁu(j+2 ), U(F)+T(3+27)}
J(j) «—u(j+2 )

S(j+2k) —5(j+2 )+T(Q)
T(j+27) «-T(Q)+T(j+2 )
T(3) «=T(j+27)
endif
end for
and for

si<-QZi), d<i<n
end PADMIS

Figure 6.4: Parallel admissable schedule algorithm.

The complexity of PADMIS is readily sea2n to be 0{(logn).
It uses n/2 PEs. By dividing the jobs into [ n/logn’]
groups, each of size at most logn, it is possible to compute
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the s.3 in O(logn) time. This requires combining tne sequen-
tial 3nd parallel algorithms togecher. We omit tne details.
However, +tnis grouping technique nas been used in otaer
eroplems. The details can be found ia £6]. Nita tais
grouping tecannigue, the parallel admissable scnedule algo-
richm will nave an EPU of O(1l).

The overall complexity of <the parallel algorithm to
minimize earliness and tardiness penaltias is determined by
tae sort {to order jobs). This takes O(logn) time and uses
n® PEs. The EPU is 0(l/n).

7. <Cnannel Assignment

The channel assignment problam occurs naturally as 2 wire
routing proolam. Components of an electrical circuit are
laied 2ut in a straight line as in Figure 7.1. Certain
pairs of components are to be connected using only two vert-
ical runs and one horizontal run of wire (as in Figure 7.1).
The horizontal and vertical runs ara pnysically located in
different layers. Each norizontal run of wire lies in a
'enannel’. No <channel can simultaneously carry more than
one wire. We are required to assign the norizontal wire
runs to channels, using the least number 2f cnannels. The
assignment of Figure 7.1 uses 3 channels.

channel 3

r -
1 ]
; 5 ! '
channel 2 r ‘ r :
)

channel 1 - + , : —_——

. | ! ! H : ! ' :

' ' | . | 1 ' H

L] . » . L) K - L]

components 1 2 3 4 5 6 7 3

Figure 7.1: Wiriag witn 3 channels.

Ia the mathematical formulation of this problem, we are
given n pairs of points (a,,p.), l<i<n. Eacn pair (a,,b.)
is to boe joined by a concinloud hoFiZontal =run of wirs.
These wires ar=2 to0 be assigned td channels, 1n sach a way
that cthe number of channels used is minimum. In the example
of Figure 7.1, na=4; the pairs of points are (1,4). (2,5),
(3,7), and (6,8); the channel assignment is: (l,4) and (5,3)
in channel !, (2,5) in channel 2, and (3,7) in channel 3.

The joo s2quencing propblem with relsase times and dua
times 3] 1is similar to the channel assignmeant problem.
Suppose we are given a set J of n jobs. Associatad with
2acn joo is a release time £ 2 due time di' and a process-
ing tine 2 A feasible schedula is one in whicn no job is

ol
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processed before its release time; all jobs complate by
their respective Jue times; and jobs are processed without
interruption from start to finish. We are required to find a
feasible schedule that uses the fawest aumber of machines.
One readily sees that when r.+p.=d., l<i<n, this problem is
identical to the channel assignment problem. When this res-
tri;tion on r., Py, and d; is removed, the problem is NP~
nard.

The fastest sequential algorithm known for the channel
as:.gnment proplem is due to Gupta, Lee, and Leung [9].
This algorithm runs in O{nlogn) time and consists of the
following steps:

step l: Sort the multiset {a; ll<i<n}U{b,ll<i<n}
of tne 2n end pointsTinto nondec%easing order.
mée—J; stack < empty
process the 2n points one by one
if the point being processad is an a;
then if stack empty then m ¢—m+l
assign this wire run to channel m
else unstack a channel from
the stack and assign the wire to this
channel
endif
else put the channel used by this wire onto the
stack

endif

In the above three step algorithm of ([9), the final
value of m 1is the fewest number of channels needed. The
assignment is constructed while this number is being deter-
mined. It 1is possible to determine this number without
actually obtaining a channel assignment. Let c,, C,, ..,
Con be the sorted sequence of 2n end points. S&t z.=1 if c,
iS7ag a; and zi=-l if <y is a bi. It is easy to BSee tnat

rj= 2 z. gives the number of wires that either start at <y
or éf%ss the point c¢.. Further, max {r.} is the number of
1 : J
1<j<2n
channels needed to route the n wire segments.

r., 1<i<n can be computed using the partial sums algo-
rithm “of (6]. This algorithm takes O(logn) time and uses
[(n/logn”] PEs. The largest r. can be found in 0O(logn)
time using [ n/logn”] PEs. ?he initial Srdering of the as
and bs can be Jdone in O{(logn) time using n PEs. If this
sorting algorithm is used, the resulting parallel algorithm
to determine tne fawest number of channels hag a time, com-
plexity of O(logn) and an EPU of O(1l/n). 1If the 0(log“n), n
PE sorting algor%thm of [21] is used instead, tha time com-
plexity is 0(log“n) and the EPU is 0(1/logn).
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Example 7.1: Figure 7.2 gives a set of n wires. Figurs 7.3
shows tne casults of tne different steps of tne parallal
algorichm to datermine the fewest number of channels naeded.

Tnis numoer is 4. []
— 4.
ag D3
27—y b7
ag i b5 azhk — bg
ay p— -+ Dy
azr —t 53

A 2
"
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Assigned Values 1 1 1 -1 1 1 -1 -1 1 -1 1 i -1 -1 -1 -1

o
(3]
w
N
w
=
w
(%]
(W8]
~
[9%)
IS
(V5]
[2%)
f
(&}

Partial Sum

MAX 4

T™e actual czhannel gssignmenc can be obtained from :tna

cjs (recall tnat r.= 3 zi), 1<j<2n. Assume tna*% :j
corrasponds to a, . Letlilbe the largest index such that
3¢j, rc_=r.-l, 3dnd c_ corrasponds to an a (say a_.). If no
sucn g 3xidcs, set g t3 3. An axaminavion of the palgorithm
of Gupta 2t al. reveals that if g=0, tnen the channel usasd
oy (ak,b ) has not been used earlier. If g #3, then iz was
mos:c :eéently used ia cthe intarval (a ’bo)‘ To see the
zruth of tnis, nota2 that at point ©_, =the Fchinnel assignad
o (a ,ba) is put into the stack.” This cnannel remains in
tne szicx¥until we rsach the ~ne2arest point at w~hich <ae
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aumber of wires that start or c¢ross is one more than the
number at b_ (if a,=a, and i<j,then we say that a, is before
a.) For “every 5 sdch that ¢, is an a point, 13t L(k) = »
as defined above. J

L(j) partitions the set of n wires ianto sets. Figure
7.4 gives the paritioning <for the example of Figure 3.3.
Each wire is represented by a circla. The circle with index
i inside it represents the wire (ai, bi)' L(3) may be
interpreted as a left link. Figure 7.4 5howS the paritions
as linked 1lists with L{ ) being shown as a lzfcward arrow.
Wa leave it to the reader to see.how the L( ) values may be
obtained in O{(logn) time using n“/logn PEs.

o—0

Figure 7.4: Paritions for Example 7.3

The channel assignment Q2(k) for a wire k with L(k) = J is
obtained from the r value corresponding to

If L(k) # 3, we may initially set Q(k)=3. The actual
channel assignments for wires with L(X) # J, may be obtainad
oy simultansously collapsing the linked liscs and cransmict-
ting tne channel assignment within the lists as below:

for je=1 to [ lognl Qo
for each i for whicn Q{(i)=9 do in parallel
T if L(L(i))=d then Q(i)” « Q(C(L))
L) e (i
gnd for
2nd for

The parallel complexity of the above scheme is O(logn).
Ther=£fore, the overall complexity of our parallel :hannei
assignmenc algorithm is O(logn) (i.e., using the O(loga) n
PE sorting algoricam); its EPU is O(1l/n).




3. Conclusions

The axtent to which parallel computers will find applicacion
will depsnd Llargely on our apility to find efficiant algo-
richms for thiem. In tnis paper we have 2xamined several
scneduling problems. The single processor algorithm for
2acn of tnese appearsd to pbe highly sequential in nature. A
closer loox revealed a parallel structura tnat led t> effi-
ciant parallel algorichms. Several otner scneduling prob-
lems <can be solved afficiently using the technigues of tais
paper and of [22]. .

Some =2xamplas are:

(a) 2 machine flow shop scheduling to minimize finisna
time.

(b) 2 machine open shop scheduling to minimize finish
time

(c) 2 machine flow shop scneduling, witn no wait in
procass, to minimize finish time

Tne parallal algorithms for the apove problems involve
a ratner straigntforward application of parallel sorting and
partial sums. For example, c—onsider problem (a). Hare, we
simply divide the job set 1nto two classes: (1) jobs which
nead less time on machiae 1 than on 2 (ii) remainingy Jops.
Jobs 1in (i) ars sorted into nondecreasing order of their
machine 1 processiang times. Jobs in (ii) are sortad 1inco
nondacr=2asing order of thsir machine 2 processing time. Tne
optimal processing permutation consists of jobs in (1)} ia
sorta2d order followed by those in (ii) in sorted order. One
readily sees that this permutation satisfies Jackson's rula
L1s].
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